ATVF — AI-BOM Schema Specification	v0.1 Draft

AI BILL OF MATERIALS
SCHEMA SPECIFICATION
ATVF Companion Document — ATV-AD-01

A Machine-Readable Format for Declaring AI System Architecture

Version 0.1 — February 2026
WORKING DRAFT

Table of Contents

1. Overview
The AI Bill of Materials (AI-BOM) is the foundational disclosure document required by ATVF control ATV-AD-01. It provides a structured, machine-readable declaration of every AI model, API dependency, and processing component that comprises an AI product or service.
The AI-BOM serves three purposes: it gives customers a clear understanding of what they are purchasing, it gives assessors a baseline against which to validate runtime behavior, and it creates an auditable record of architectural changes over time.
Design Principle: The AI-BOM must be detailed enough to enable verification but must not require vendors to expose trade secrets or proprietary algorithmic details. The schema captures what components exist and how they interact, not how they were built internally.
1.1 Relationship to Existing Standards
The AI-BOM schema draws on concepts from CycloneDX and SPDX Software Bills of Materials (SBOM) standards, extending them for AI-specific components. Organizations already producing SBOMs can incorporate the AI-BOM as a companion document or nested component within their existing SBOM toolchain.
1.2 Schema Format
The AI-BOM is specified in JSON Schema (draft 2020-12). Vendors may produce AI-BOM documents in JSON or YAML format. XML representations are permitted but the canonical format is JSON.

2. Top-Level Schema Structure
The AI-BOM document contains the following top-level objects:
	Field
	Type
	Description

	bomVersion
	string
	Schema version. Current: "0.1.0"

	documentId
	string (UUID)
	Unique identifier for this AI-BOM instance.

	timestamp
	string (ISO 8601)
	Date and time this AI-BOM was generated.

	vendor
	object
	Vendor identity and contact information.

	product
	object
	Product identity, version, and description.

	models
	array
	All AI models used in the product.

	apiDependencies
	array
	All external API endpoints called during inference.

	pipeline
	object
	Inference pipeline stages and component mapping.

	dataFlows
	array
	Data movement paths during inference.

	capabilityClaims
	array
	Mapping of product claims to technical components.

	changeHistory
	array
	Record of material changes to the architecture.

3. Object Definitions
3.1 Vendor Object
{
 "vendor": {
 "name": "Acme AI Corp",
 "legalEntity": "Acme AI Corporation, Inc.",
 "jurisdiction": "US-DE",
 "contactEmail": "compliance@acmeai.example.com",
 "website": "https://acmeai.example.com",
 "dunsNumber": "123456789"
 }
}
	Field
	Type
	Required
	Description

	name
	string
	Yes
	Vendor trade name.

	legalEntity
	string
	Yes
	Registered legal entity name.

	jurisdiction
	string
	Yes
	ISO 3166 country/subdivision of incorporation.

	contactEmail
	string
	Yes
	Compliance or security contact.

	website
	string (URI)
	No
	Vendor website.

	dunsNumber
	string
	No
	D-U-N-S number for entity verification.

3.2 Product Object
{
 "product": {
 "name": "Acme Document Intelligence",
 "version": "2.4.1",
 "description": "AI-powered document extraction and analysis",
 "deploymentModel": "saas",
 "hostingRegions": ["us-east-1", "us-west-2"],
 "complianceBoundaries": ["FedRAMP-High", "GCC"]
 }
}
	Field
	Type
	Required
	Description

	name
	string
	Yes
	Product name as marketed.

	version
	string
	Yes
	Product version (semver recommended).

	deploymentModel
	enum
	Yes
	One of: saas, on-premise, hybrid, edge.

	hostingRegions
	array[string]
	Yes
	Cloud regions or data center locations.

	complianceBoundaries
	array[string]
	No
	Declared compliance boundaries.

3.3 Model Object
Each entry in the models array describes a single AI model used in the product. This is the most critical section of the AI-BOM for verification purposes.
{
 "models": [
 {
 "modelId": "mdl-001",
 "name": "Document Classifier",
 "provider": "self",
 "providerDetail": "Trained in-house on proprietary dataset",
 "modelFamily": "BERT",
 "modelVersion": "dc-v3.2",
 "parameterCount": "110M",
 "type": "fine-tuned",
 "baseModel": "bert-base-uncased",
 "baseModelProvider": "huggingface",
 "inferenceLocation": "local",
 "inferenceHardware": "NVIDIA A100 40GB",
 "servingFramework": "TorchServe 0.9.0",
 "purpose": "Classifies document type for routing"
 },
 {
 "modelId": "mdl-002",
 "name": "Content Extractor",
 "provider": "openai",
 "providerDetail": "Accessed via OpenAI API",
 "modelFamily": "GPT-4",
 "modelVersion": "gpt-4-turbo-2024-04-09",
 "parameterCount": "undisclosed",
 "type": "api-hosted",
 "baseModel": null,
 "baseModelProvider": null,
 "inferenceLocation": "remote",
 "apiEndpoint": "https://api.openai.com/v1/chat/completions",
 "purpose": "Extracts structured data from documents"
 }
]
}
	Field
	Type
	Req
	Description

	modelId
	string
	Yes
	Unique identifier within this AI-BOM.

	name
	string
	Yes
	Human-readable model name.

	provider
	enum
	Yes
	self | openai | anthropic | google | meta | mistral | cohere | other.

	type
	enum
	Yes
	proprietary | fine-tuned | prompt-engineered | api-hosted | open-source.

	baseModel
	string|null
	Cond.
	Required if type is fine-tuned or prompt-engineered. Identifies the foundation model.

	inferenceLocation
	enum
	Yes
	local | remote | hybrid. Where inference compute occurs.

	apiEndpoint
	string (URI)
	Cond.
	Required if inferenceLocation is remote. The API endpoint called.

	parameterCount
	string
	Yes
	Parameter count or "undisclosed" if third-party model.

	purpose
	string
	Yes
	Functional role of this model in the product.

The ‘type’ field is the single most important disclosure in the AI-BOM. A vendor claiming ‘proprietary’ when the model is actually ‘api-hosted’ or ‘prompt-engineered’ is the exact misrepresentation ATVF is designed to detect.

3.4 API Dependencies Object
Captures every external API called during inference, including non-model services such as vector databases, embedding endpoints, and content moderation APIs.
{
 "apiDependencies": [
 {
 "dependencyId": "api-001",
 "provider": "OpenAI",
 "service": "Chat Completions API",
 "endpoint": "https://api.openai.com/v1/chat/completions",
 "protocol": "HTTPS/REST",
 "authentication": "api-key",
 "dataTransmitted": ["document_text", "classification_context"],
 "dataReceived": ["extracted_fields", "confidence_scores"],
 "region": "us-east",
 "slaReference": "https://openai.com/policies/sla",
 "linkedModelId": "mdl-002"
 },
 {
 "dependencyId": "api-002",
 "provider": "Pinecone",
 "service": "Vector Search",
 "endpoint": "https://acme-prod.svc.pinecone.io",
 "protocol": "HTTPS/gRPC",
 "authentication": "api-key",
 "dataTransmitted": ["document_embeddings"],
 "dataReceived": ["similar_document_ids", "similarity_scores"],
 "region": "us-east-1 (AWS)",
 "linkedModelId": null
 }
]
}
	Field
	Type
	Req
	Description

	dependencyId
	string
	Yes
	Unique ID within this AI-BOM.

	provider
	string
	Yes
	Third-party provider name.

	endpoint
	string (URI)
	Yes
	Full API endpoint URI.

	dataTransmitted
	array[string]
	Yes
	Categories of data sent to this API.

	dataReceived
	array[string]
	Yes
	Categories of data received from this API.

	region
	string
	Yes
	Geographic region of the API endpoint.

	linkedModelId
	string|null
	No
	References a model in the models array if this API serves a model.

3.5 Pipeline Object
Describes the inference pipeline as an ordered sequence of stages, mapping each stage to the model or component that executes it. This is what assessors validate against observed runtime behavior.
{
 "pipeline": {
 "description": "Document processing pipeline",
 "stages": [
 {
 "stageId": "stg-01",
 "name": "Document Ingestion",
 "type": "preprocessing",
 "component": "internal",
 "description": "OCR and text extraction from uploaded documents"
 },
 {
 "stageId": "stg-02",
 "name": "Document Classification",
 "type": "inference",
 "component": "mdl-001",
 "description": "Classifies document type using local BERT model"
 },
 {
 "stageId": "stg-03",
 "name": "Context Retrieval",
 "type": "retrieval",
 "component": "api-002",
 "description": "Vector search for similar document templates"
 },
 {
 "stageId": "stg-04",
 "name": "Field Extraction",
 "type": "inference",
 "component": "mdl-002",
 "description": "LLM extracts structured fields via OpenAI API"
 },
 {
 "stageId": "stg-05",
 "name": "Validation & Output",
 "type": "postprocessing",
 "component": "internal",
 "description": "Schema validation and confidence scoring"
 }
]
 }
}
The stage type field uses one of the following values: preprocessing, inference, retrieval, embedding, postprocessing, routing, moderation, or other. The component field references either a modelId, dependencyId, or the literal value "internal" for vendor-built non-AI components.

3.6 Capability Claims Object
Maps vendor marketing and sales claims to the specific technical components that deliver each claimed capability. This is the Capability Claims Register required by ATV-AD-03.
{
 "capabilityClaims": [
 {
 "claimId": "clm-001",
 "claim": "Proprietary document classification AI",
 "source": "Product marketing page, Sales deck v4.2",
 "supportingComponents": ["mdl-001"],
 "accuracy": "partially-accurate",
 "notes": "Model is fine-tuned BERT, not built from scratch.
 Classification is proprietary; base architecture is not."
 },
 {
 "claimId": "clm-002",
 "claim": "AI-powered data extraction",
 "source": "Product marketing page",
 "supportingComponents": ["mdl-002", "api-001"],
 "accuracy": "accurate",
 "notes": "Extraction is performed by GPT-4 via API as disclosed."
 }
]
}
	Field
	Type
	Req
	Description

	claim
	string
	Yes
	The exact capability claim as stated in vendor materials.

	source
	string
	Yes
	Where this claim appears (marketing, sales, contract).

	supportingComponents
	array[string]
	Yes
	Model/API IDs that deliver this capability.

	accuracy
	enum
	Yes
	accurate | partially-accurate | misleading | unverifiable.

The accuracy field is populated by the assessor, not the vendor. Vendors submit the claim and supporting components; the assessor determines accuracy based on runtime verification evidence.

3.7 Change History Object
Records all material architecture changes as required by ATV-AD-02. Each change entry creates an auditable record that assessors can correlate with runtime verification data.
{
 "changeHistory": [
 {
 "changeId": "chg-001",
 "timestamp": "2025-11-15T00:00:00Z",
 "type": "model-substitution",
 "description": "Upgraded extraction model from GPT-4 to GPT-4-turbo",
 "affectedComponents": ["mdl-002"],
 "previousValue": "gpt-4-0613",
 "newValue": "gpt-4-turbo-2024-04-09",
 "customerNotified": true,
 "notificationDate": "2025-11-18T00:00:00Z"
 }
]
}
The type field uses one of: model-substitution, model-addition, model-removal, api-addition, api-removal, api-migration, pipeline-change, region-change, boundary-change, or other. Each change must reference the affected component IDs and record whether customer notification occurred within the 30-day window required by ATV-AD-02.

4. Validation Rules
AI-BOM documents must pass the following validation rules to be considered schema-compliant:
4.1 Structural Validation
1. All required fields must be present and non-empty.
1. All ID fields (modelId, dependencyId, stageId, etc.) must be unique within their respective arrays.
1. Cross-references must resolve: pipeline stage component values must reference valid modelId, dependencyId, or the literal "internal".
1. Capability claims supportingComponents must reference valid modelId or dependencyId values.
1. Conditional fields must be present when their conditions are met (e.g., apiEndpoint required when inferenceLocation is "remote").
4.2 Semantic Validation
1. Every model with inferenceLocation "remote" must have a corresponding entry in apiDependencies.
1. Every apiDependencies entry with a linkedModelId must reference a model that exists in the models array.
1. Every pipeline stage of type "inference" must reference a model, not an internal component.
1. The pipeline must contain at least one stage of type "inference" (a product with no inference stages is not an AI product).
1. Change history entries must be in chronological order.
4.3 Completeness Checks
Assessors shall verify the following during AI-BOM review:
1. Every model referenced in the pipeline is declared in the models array (no undeclared models).
1. Every external API observed during runtime verification is declared in apiDependencies (no undeclared dependencies).
1. The pipeline accurately represents the actual inference path as confirmed by runtime telemetry.
1. No model or API dependency has been omitted. Omission of a component is a finding equivalent to misrepresentation.

5. Document Signing and Integrity
AI-BOM documents shall be digitally signed to ensure integrity and non-repudiation. The framework supports two signing mechanisms:
5.1 JSON Web Signature (JWS)
The AI-BOM may be wrapped in a JWS envelope (RFC 7515) using the vendor’s signing key. The JWS header shall include the x5c parameter containing the vendor’s certificate chain, enabling assessors to verify the signing identity.
5.2 Detached Signature
Alternatively, the AI-BOM may be accompanied by a detached signature file (PGP or S/MIME) that can be verified independently. This approach is preferred for organizations that integrate AI-BOM documents into existing document management systems.
5.3 Timestamping
All AI-BOM documents shall include a trusted timestamp (RFC 3161 or equivalent) to establish when the document was created. This prevents backdating of disclosures and enables assessors to correlate AI-BOM versions with observation periods.

6. Complete Example: Honest Vendor
The following is a complete AI-BOM for a hypothetical vendor that uses a mix of proprietary and third-party components and discloses this honestly. This represents what a compliant, transparent AI-BOM looks like.
{
 "bomVersion": "0.1.0",
 "documentId": "550e8400-e29b-41d4-a716-446655440000",
 "timestamp": "2026-02-01T12:00:00Z",
 "vendor": {
 "name": "DocuSmart AI",
 "legalEntity": "DocuSmart AI, Inc.",
 "jurisdiction": "US-CA",
 "contactEmail": "security@docusmart.example.com"
 },
 "product": {
 "name": "DocuSmart Extract Pro",
 "version": "3.1.0",
 "description": "Intelligent document processing platform",
 "deploymentModel": "saas",
 "hostingRegions": ["us-east-1"],
 "complianceBoundaries": ["SOC2-TypeII"]
 },
 "models": [
 {
 "modelId": "mdl-001",
 "name": "Layout Detector",
 "provider": "self",
 "type": "fine-tuned",
 "baseModel": "detectron2",
 "baseModelProvider": "meta",
 "parameterCount": "43M",
 "inferenceLocation": "local",
 "inferenceHardware": "NVIDIA T4",
 "purpose": "Detects document layout regions"
 },
 {
 "modelId": "mdl-002",
 "name": "Field Extractor",
 "provider": "anthropic",
 "type": "prompt-engineered",
 "baseModel": "claude-sonnet-4-5-20250929",
 "inferenceLocation": "remote",
 "parameterCount": "undisclosed",
 "apiEndpoint": "https://api.anthropic.com/v1/messages",
 "purpose": "Extracts structured fields from documents"
 }
],
 "apiDependencies": [
 {
 "dependencyId": "api-001",
 "provider": "Anthropic",
 "service": "Messages API",
 "endpoint": "https://api.anthropic.com/v1/messages",
 "protocol": "HTTPS/REST",
 "authentication": "api-key",
 "dataTransmitted": ["document_text", "extraction_prompt"],
 "dataReceived": ["extracted_fields"],
 "region": "us-east-1",
 "linkedModelId": "mdl-002"
 }
],
 "pipeline": {
 "stages": [
 { "stageId": "stg-01", "name": "OCR", "type": "preprocessing",
 "component": "internal" },
 { "stageId": "stg-02", "name": "Layout Detection",
 "type": "inference", "component": "mdl-001" },
 { "stageId": "stg-03", "name": "Field Extraction",
 "type": "inference", "component": "mdl-002" },
 { "stageId": "stg-04", "name": "Validation",
 "type": "postprocessing", "component": "internal" }
]
 },
 "capabilityClaims": [],
 "changeHistory": []
}
This vendor is transparent: they run a fine-tuned layout model locally and use Anthropic’s Claude for extraction via API. An ATVF assessor would verify that the runtime behavior matches this disclosure — local GPU activity during layout detection, outbound API calls to api.anthropic.com during extraction, and no undisclosed network egress.

END OF AI-BOM SCHEMA SPECIFICATION
Page
