ATVF — Verification Agent Architecture	v0.1 Draft

ATVF VERIFICATION AGENT
ARCHITECTURE SPECIFICATION
ATVF Companion Document — ATV-RV Controls

eBPF-Based Runtime Verification for AI System Attestation

Version 0.1 — February 2026
WORKING DRAFT

Table of Contents

1. Introduction
The ATVF Verification Agent is the core technical component that enables evidence-based validation of AI system architecture claims. It provides independent, kernel-level observability into a vendor’s production environment, capturing the runtime telemetry necessary to verify or refute the declarations made in an AI-BOM.
This document specifies the architecture, deployment models, data collection mechanisms, and integrity protections for the verification agent. It serves as the technical implementation guide for ATVF controls ATV-RV-01 through ATV-RV-04.
1.1 Why eBPF
Extended Berkeley Packet Filter (eBPF) is the foundation technology for the verification agent for several critical reasons:
1. Kernel-Level Visibility: eBPF programs execute in the Linux kernel, providing access to system calls, network events, and hardware utilization data that cannot be observed from userspace. A vendor cannot hide API calls from a kernel-level observer without modifying the kernel itself.
1. No Application Modification Required: eBPF attaches to existing kernel hooks (tracepoints, kprobes, XDP). The vendor’s application code does not need to be modified, recompiled, or aware of the agent. This eliminates the risk of vendors altering their application behavior to accommodate or deceive the agent.
1. Safety Guarantees: The eBPF verifier in the Linux kernel ensures that eBPF programs cannot crash the system, access unauthorized memory, or execute unbounded loops. This makes the agent safe to deploy in production environments.
1. Performance: eBPF programs execute with near-native performance. The overhead of the verification agent is typically less than 2% of system resources, making it viable for production workloads.
Key Principle: The verification agent observes from a position of privilege that the vendor’s application cannot circumvent without root-level kernel tampering — which itself would be detectable.

2. Agent Architecture
2.1 Component Overview
The verification agent consists of four primary components that operate together to collect, process, store, and export telemetry data:
	Component
	Technology
	Function

	Probe Layer
	eBPF programs (C)
	Kernel-space instrumentation: captures syscalls, network events, GPU/memory telemetry.

	Collection Daemon
	Rust userspace daemon
	Reads eBPF ring buffers and perf maps, correlates events, assembles interaction records.

	Local Store
	Embedded append-only DB
	Tamper-evident local storage with hash chaining. Buffers records before export.

	Export Engine
	gRPC / HTTPS client
	Transmits records to assessor-controlled collection endpoint. Supports backpressure and retry.

2.2 Probe Layer Detail
The probe layer consists of multiple eBPF programs attached to specific kernel hooks. Each probe targets a distinct observability domain:
2.2.1 Network Probes
Network probes capture all TCP/UDP connection events and data flow to identify external API calls made during inference. The probes attach to the following kernel hooks:
// Attach points for network observation
SEC("kprobe/tcp_connect") // Outbound TCP connection initiation
SEC("kprobe/tcp_sendmsg") // Data sent on TCP connections
SEC("kprobe/tcp_recvmsg") // Data received on TCP connections
SEC("kprobe/tcp_close") // Connection termination
SEC("tracepoint/sock/inet_sock_set_state") // Socket state transitions
SEC("xdp") // Ingress packet inspection (optional)
For each outbound connection, the probe records the destination IP address and port, the resolved hostname (captured from DNS queries via a companion probe on udp_sendmsg to port 53), TLS SNI value (extracted from the ClientHello during connection setup), bytes transmitted and received, connection duration, and the process ID and command name that initiated the connection.
The agent maintains a dynamic allowlist of known foundation model API endpoints, updated by the assessor. Connections to these endpoints are flagged with high priority and correlated with interaction records.
2.2.2 Compute Probes
Compute probes profile CPU, GPU, and memory utilization to generate compute signatures that distinguish local model inference from API proxy operations:
// Attach points for compute profiling
SEC("tracepoint/sched/sched_process_exec") // Process execution
SEC("tracepoint/sched/sched_switch") // CPU scheduling
SEC("kprobe/ioctl") // GPU driver IOCTL calls
SEC("tracepoint/gpu/gpu_job_submit") // GPU job submission (driver-specific)
SEC("tracepoint/mm/mm_page_alloc") // Memory allocation
GPU monitoring is particularly important. Local model inference produces a characteristic pattern of large contiguous memory allocations (model weight loading), followed by repeated GPU kernel dispatches during forward passes. An application that proxies to an API will show minimal GPU activity and small, transient memory allocations. The agent builds a statistical profile of these patterns and compares them against reference baselines for the model architectures declared in the AI-BOM.
2.2.3 Process Probes
Process probes track the lifecycle of processes involved in AI inference to maintain a complete picture of what software is running and what it’s doing:
// Attach points for process monitoring
SEC("tracepoint/sched/sched_process_fork") // New process creation
SEC("tracepoint/sched/sched_process_exec") // Binary execution
SEC("tracepoint/sched/sched_process_exit") // Process termination
SEC("kprobe/sys_openat") // File access (model loading)
The file access probe is critical for verifying model loading. When a vendor claims to run a local model, the agent should observe file reads from model weight files (typically large files in formats like .bin, .safetensors, .onnx, or .pt). The absence of such file access during inference strongly suggests the vendor is not running a local model.

3. Data Collection and Correlation
3.1 Event Pipeline
Raw eBPF events flow through a multi-stage pipeline in the collection daemon:
1. Stage 1 — Event Ingestion: eBPF programs write events to per-CPU ring buffers. The collection daemon polls these buffers using epoll and deserializes events into typed structures. Events are timestamped using the kernel’s monotonic clock, then correlated to wall clock time.
1. Stage 2 — Process Correlation: Events are tagged with process metadata (PID, PPID, command, cgroup). This enables the agent to attribute network connections and compute utilization to specific application processes, filtering out unrelated system activity.
1. Stage 3 — Interaction Assembly: The daemon correlates temporally-related events into interaction records. When a network event to a known API endpoint is preceded by a user-facing HTTP request (detected via ingress probes) and followed by a response, the daemon assembles these into a complete interaction record that maps to ATV-IL-01 requirements.
1. Stage 4 — Signature Generation: For each interaction, the daemon computes a compute signature summarizing GPU utilization, memory allocation, CPU time, and network I/O. This signature is compared against reference profiles to classify the interaction as local-inference, remote-api-call, hybrid, or anomalous.
1. Stage 5 — Record Sealing: Completed interaction records are hashed and appended to the local hash chain. Each record includes the hash of the previous record, creating a tamper-evident sequence.
3.2 Interaction Record Schema
Each sealed interaction record contains the following fields:
{
 "recordId": "rec-2026-02-01-000001",
 "previousHash": "sha256:abc123...",
 "recordHash": "sha256:def456...",
 "timestamp": "2026-02-01T14:23:01.234Z",
 "interactionId": "iact-550e8400-...",
 "processContext": {
 "pid": 12345,
 "command": "inference-server",
 "cgroup": "/docker/abc123..."
 },
 "networkEvents": [
 {
 "destination": "api.openai.com:443",
 "resolvedIp": "104.18.7.192",
 "tlsSni": "api.openai.com",
 "bytesSent": 4821,
 "bytesReceived": 12034,
 "durationMs": 892,
 "knownEndpoint": "openai-chat-completions"
 }
],
 "computeSignature": {
 "cpuTimeMs": 12,
 "gpuUtilizationPct": 0.0,
 "gpuMemoryAllocatedMb": 0,
 "gpuKernelDispatches": 0,
 "systemMemoryAllocatedMb": 23,
 "modelFileAccess": false
 },
 "classification": "remote-api-call",
 "aibomCorrelation": {
 "declaredModel": "mdl-002",
 "declaredLocation": "remote",
 "observedLocation": "remote",
 "consistent": true
 }
}
The aibomCorrelation field is where the agent directly validates the vendor’s claims. If declaredLocation says ‘local’ but observedLocation shows ‘remote,’ that’s a verification failure.

4. Compute Signature Reference Profiles
The agent maintains reference profiles for common inference patterns. These profiles establish expected ranges for key metrics and enable automated classification of observed behavior.
4.1 Local Inference Profile
When a model is running locally, the following characteristics are expected:
	Metric
	Expected Range
	Indicator

	GPU Utilization
	40–99% during inference
	Sustained spikes correlated with requests

	GPU Memory
	Model-dependent (hundreds of MB to tens of GB)
	Persistent allocation matching model size

	GPU Kernel Dispatches
	Hundreds to thousands per inference
	Burst pattern per request

	Model File Access
	Large file reads at startup
	.safetensors, .bin, .pt file opens

	Outbound Network
	Minimal or none during inference
	No connections to model API endpoints

	Latency Profile
	Consistent, low variance
	Not dependent on network conditions

4.2 Remote API Proxy Profile
When an application proxies requests to a third-party API, the characteristics are distinctly different:
	Metric
	Expected Range
	Indicator

	GPU Utilization
	Near 0%
	No GPU compute during inference

	GPU Memory
	Near 0 MB
	No model weights loaded

	GPU Kernel Dispatches
	0
	No GPU work submitted

	Model File Access
	None
	No model weight files opened

	Outbound Network
	1+ connections per inference request
	Connections to known API endpoints

	Latency Profile
	Higher variance, network-dependent
	Correlated with API endpoint latency

4.3 Hybrid Profile
Some legitimate architectures combine local and remote processing (e.g., local embedding with remote LLM inference). The hybrid profile expects a combination of local inference and remote API characteristics, with the key requirement being that the pattern matches what the AI-BOM declares. A vendor claiming fully local inference but showing a hybrid profile has a verification discrepancy.

5. Deployment Models
The verification agent supports multiple deployment configurations depending on the trust model and assurance level required.
5.1 Vendor Self-Hosted (Standard Assurance)
The vendor deploys and operates the agent in their production environment. The agent binary is provided by the assessor and its integrity is verified at startup via code signing. Telemetry is exported to an assessor-controlled endpoint in real-time. This model is suitable for ATVF Type I assessments and lower-risk contexts. The primary risk is that a vendor with root access could theoretically interfere with the agent, though such interference would be detectable through integrity checks.
5.2 Assessor-Deployed (High Assurance)
The assessor deploys the agent directly into the vendor’s environment, typically via a hardened container or VM with restricted access. The vendor provides network connectivity and kernel access (BPF capabilities) but does not control the agent’s lifecycle. This is the preferred model for ATVF Type II assessments and high-assurance contexts such as defense and federal environments. The agent container runs with the following Linux capabilities:
Required Linux capabilities for the verification agent
CAP_BPF # Load and manage eBPF programs
CAP_PERFMON # Access perf events and hardware counters
CAP_NET_ADMIN # Attach to network hooks (XDP, TC)
CAP_SYS_PTRACE # Read process metadata across containers

The agent explicitly does NOT require:
CAP_SYS_ADMIN # Full admin (excessive privilege)
CAP_SYS_MODULE # Kernel module loading (not needed)
5.3 Confidential Computing (Maximum Assurance)
For the highest assurance level, the agent runs inside a Trusted Execution Environment (TEE) such as Intel TDX, AMD SEV-SNP, or AWS Nitro Enclaves. The TEE provides hardware-level attestation that the agent code has not been modified and that its memory is isolated from the host operating system. This model provides cryptographic proof that the agent’s observations are authentic, even if the vendor has full root access to the host. TEE deployment is recommended for assessments involving classified environments, ITAR-controlled data, or situations where the vendor has an adversarial posture.
TEE deployment requires kernel support for eBPF within the enclave. As of early 2026, this is possible in Intel TDX and AMD SEV-SNP VMs but not in all TEE implementations. Compatibility should be verified during assessment planning.

6. Agent Integrity and Self-Attestation
The verification agent must itself be trustworthy. If the agent can be tampered with, its observations are worthless. ATVF requires the following integrity protections:
6.1 Code Signing
The agent binary and all eBPF programs are signed using a code signing certificate controlled by the ATVF assessor organization. At startup, the agent verifies the signature of every eBPF program before loading it into the kernel. If any signature check fails, the agent refuses to start and generates a critical alert.
6.2 Runtime Integrity Monitoring
The agent monitors its own integrity during operation. It periodically verifies the hash of its in-memory eBPF programs against known-good values, monitors for unexpected detachment of eBPF programs from their kernel hooks, checks that its ring buffers and perf maps have not been redirected, and validates that its export channel to the assessor endpoint remains intact.
6.3 Heartbeat and Liveness
The agent sends a cryptographically signed heartbeat to the assessor collection endpoint at a configurable interval (default: 60 seconds). The heartbeat includes the agent’s current status, the number of active eBPF programs, the hash of the running agent binary, and a monotonically increasing sequence number. Gaps in the heartbeat sequence indicate the agent was stopped or tampered with, and are flagged as critical findings in the assessment.
6.4 Tamper Detection
The agent monitors for indicators that the vendor is attempting to interfere with observation:
1. Kernel module loads during the assessment period (could indicate an attempt to intercept eBPF hooks).
1. Changes to the kernel’s eBPF JIT compiler settings.
1. Network namespace changes that could hide traffic from the agent.
1. cgroup migrations that could move inference processes out of the agent’s monitoring scope.
1. Unexpected process restarts of the agent or its dependencies.

7. Anti-Evasion Techniques
ATVF acknowledges that sophisticated vendors may attempt to defeat verification. The agent implements several countermeasures aligned with ATV-RV-04.
7.1 Proxy Detection
A vendor might route API calls through their own intermediate server to obscure the final destination. The agent counters this by tracking all outbound connections from inference processes, including connections initiated by child processes and threads. If a connection goes to an intermediate host that then makes its own outbound connection to a known API endpoint, the agent flags this as a proxy pattern. DNS resolution is also monitored to detect the vendor resolving known API endpoint hostnames even if the connection appears to go to a different IP.
7.2 Latency Injection Detection
A vendor might add artificial delays to API-proxied responses to mimic the latency profile of local inference. The agent detects this by analyzing the statistical distribution of response latencies. Genuine local inference produces latency distributions that correlate with input complexity (longer inputs take longer). Artificial delays tend to produce more uniform distributions or distributions that don’t correlate with input characteristics. The agent performs Kolmogorov-Smirnov tests against reference latency distributions for declared model architectures.
7.3 Decoy Model Detection
A vendor might load a small, non-functional model into GPU memory to produce model-loading telemetry while actually routing inference to an API. The agent counters this by correlating GPU kernel dispatch patterns with model architecture expectations. A 7B parameter model produces different GPU utilization patterns than a 70B model. If the loaded model’s compute signature doesn’t match the declared architecture, it’s flagged. Additionally, the agent correlates the volume of GPU compute with the volume of inference requests — a decoy model won’t show compute that scales with request volume.
7.4 Assessment Window Randomization
For Type II assessments, the agent operates continuously, but the assessor performs intensive analysis on randomized windows. The vendor does not know which time periods will receive detailed scrutiny, preventing them from altering behavior during specific windows. The agent also compares behavioral patterns across time windows to detect inconsistencies (e.g., API calls disappearing during business hours when the vendor expects assessment activity).

8. Data Export and Assessor Integration
8.1 Export Protocol
The agent exports sealed interaction records to the assessor’s collection infrastructure using mutual TLS (mTLS) authenticated gRPC streams. Both the agent and the collection endpoint present certificates from a trust chain controlled by the assessor. Records are transmitted in batches with configurable batch size and flush intervals. The export protocol supports backpressure, allowing the collection endpoint to slow the agent if it cannot keep up, and automatic retry with exponential backoff for transient failures.
8.2 Data Retention at the Agent
The agent maintains a local buffer of sealed records sufficient to cover at least 72 hours of operation. This ensures that temporary network disruptions to the export channel do not result in data loss. Once records are acknowledged by the collection endpoint, the local buffer may be pruned. The local store itself is an append-only database with hash chain verification, ensuring that even locally-buffered records maintain their integrity guarantees.
8.3 Collection Infrastructure
The assessor operates a collection endpoint that receives, validates, and stores interaction records. The collection infrastructure verifies the hash chain integrity of received records, validates agent heartbeats and monitors for gaps, stores records in an immutable, queryable format, generates the telemetry summaries used in ATVF Attestation Reports, and provides the data feed for the customer interaction portal defined in ATV-CR-03.
8.4 Privacy Controls
The agent is designed to capture metadata, not content. By default, the agent records that a connection was made to api.openai.com and how many bytes were transmitted, but does not capture the content of the request or response. For environments with additional privacy requirements, the agent supports configurable data minimization profiles that can further restrict what metadata is collected. Content inspection mode is available as an opt-in for assessments that require it, but must be explicitly authorized by the customer.

9. Platform Support and Requirements
9.1 Operating System Requirements
	Requirement
	Specification

	Linux Kernel
	5.15+ (eBPF ring buffer support). 6.1+ recommended for BTF and CO-RE support.

	BPF Capabilities
	CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_PTRACE.

	GPU Monitoring
	NVIDIA: requires nvidia-perf driver access. AMD: ROCm SMI. Intel: Level Zero Sysman.

	Memory
	Minimum 512MB for agent and local store. 2GB recommended for high-throughput environments.

	Network
	Outbound HTTPS/gRPC to assessor collection endpoint. Minimum 1 Mbps sustained.

9.2 Containerized and Kubernetes Environments
Most AI services run in containers. The agent supports deployment as a DaemonSet in Kubernetes clusters, providing per-node observation. In containerized environments, the agent runs in a privileged sidecar or system container with host PID and network namespace visibility. The agent uses cgroup-based filtering to scope its observation to relevant inference workloads, reducing noise from unrelated containers on the same host.
9.3 Cloud Provider Considerations
In cloud environments (AWS, Azure, GCP), the agent operates within the customer’s VM or container instance. It does not require cloud provider cooperation. However, some cloud-specific considerations apply: AWS Nitro instances provide additional hardware attestation that can supplement the agent’s software-based attestation, Azure Confidential Computing VMs support TEE deployment of the agent, and GCP Confidential VMs with AMD SEV-SNP are compatible with the maximum assurance deployment model.

10. Reference Implementation Roadmap
An open-source reference implementation of the verification agent is planned to enable community review, testing, and adoption. The reference implementation will be developed in phases:
Phase 1: Core Probes (Target: Q3 2026)
1. Network egress monitoring probes with DNS correlation.
1. Process lifecycle tracking with cgroup awareness.
1. Basic compute profiling (CPU and memory).
1. Hash-chained local storage.
1. CLI-based operation and JSON export.
Phase 2: GPU and Signatures (Target: Q4 2026)
1. NVIDIA GPU monitoring integration.
1. Compute signature generation and classification engine.
1. Reference profile library for common model architectures.
1. gRPC export with mTLS.
Phase 3: Anti-Evasion and Automation (Target: Q1 2027)
1. Proxy detection and latency analysis modules.
1. Decoy model detection.
1. Automated AI-BOM correlation engine.
1. Kubernetes DaemonSet deployment manifests.
1. Assessor dashboard and reporting integration.
Phase 4: TEE and Certification (Target: Q2 2027)
1. Intel TDX and AMD SEV-SNP enclave deployment.
1. Hardware attestation chain integration.
1. Assessor certification toolkit.
1. Community audit and security review.
The reference implementation will be licensed under Apache 2.0 to enable both open-source and commercial use while encouraging contributions back to the core project.

END OF VERIFICATION AGENT ARCHITECTURE SPECIFICATION
Page
